Problem 3.29

Consider operators \hat{A} and \hat{B} that do not commute with each other $(\hat{C}=[\hat{A}, \hat{B}])$ but do commute with their commutator: $[\hat{A}, \hat{C}]=[\hat{B}, \hat{C}]=0$ (for instance, \hat{x} and \hat{p}).
(a) Show that

$$
\left[\hat{A}^{n}, \hat{B}\right]=n \hat{A}^{n-1} \hat{C} .
$$

Hint: You can prove this by induction on n, using Equation 3.65.
(b) Show that

$$
\left[e^{\lambda \hat{A}}, \hat{B}\right]=\lambda e^{\lambda \hat{A}} \hat{C}
$$

where λ is any complex number. Hint: Express $e^{\lambda \hat{A}}$ as a power series.
(c) Derive the Baker-Campbell-Hausdorff formula: ${ }^{37}$

$$
e^{\hat{A}+\hat{B}}=e^{\hat{A}} e^{\hat{B}} e^{-\hat{C} / 2} .
$$

Hint: Define the functions

$$
\hat{f}(\lambda)=e^{\lambda(\hat{A}+\hat{B})}, \quad \hat{g}(\lambda)=e^{\lambda \hat{A}} e^{\lambda \hat{B}} e^{-\lambda^{2} \hat{C} / 2}
$$

Note that these functions are equal at $\lambda=0$, and show that they satisfy the same
differential equation: $d \hat{f} / d \lambda=(\hat{A}+\hat{B}) \hat{f}$ and $d \hat{g} / d \lambda=(\hat{A}+\hat{B}) \hat{g}$. Therefore, the functions are themselves equal for all $\lambda .{ }^{38}$

Solution

Part (a)
The aim is to use the principle of mathematical induction to show that

$$
\left[\hat{A}^{n}, \hat{B}\right]=n \hat{A}^{n-1}[\hat{A}, \hat{B}] .
$$

Start by checking the base case $n=1$.

$$
\begin{aligned}
{\left[\hat{A}^{1}, \hat{B}\right] } & \stackrel{?}{=} 1 \hat{A}^{1-1}[\hat{A}, \hat{B}] \\
{[\hat{A}, \hat{B}] } & \stackrel{?}{=} \hat{A}^{0}[\hat{A}, \hat{B}] \\
& \stackrel{?}{=} \hat{I}[\hat{A}, \hat{B}] \\
& =[\hat{A}, \hat{B}]
\end{aligned}
$$

[^0]Now make the inductive hypothesis,

$$
\left[\hat{A}^{k}, \hat{B}\right]=k \hat{A}^{k-1}[\hat{A}, \hat{B}] .
$$

It must be shown that

$$
\left[\hat{A}^{k+1}, \hat{B}\right]=(k+1) \hat{A}^{k}[\hat{A}, \hat{B}] .
$$

Work with the left side and use the commutator identity in Equation 3.65, $[\hat{A} \hat{B}, \hat{C}]=\hat{A}[\hat{B}, \hat{C}]+[\hat{A}, \hat{C}] \hat{B}$.

$$
\begin{align*}
{\left[\hat{A}^{k+1}, \hat{B}\right] } & =\left[\hat{A} \hat{A}^{k}, \hat{B}\right] \\
& =\hat{A}\left[\hat{A}^{k}, \hat{B}\right]+[\hat{A}, \hat{B}] \hat{A}^{k} \\
& =\hat{A}\left(k \hat{A}^{k-1}[\hat{A}, \hat{B}]\right)+[\hat{A}, \hat{B}] \hat{A}^{k} \\
& =k \hat{A}^{k}[\hat{A}, \hat{B}]+[\hat{A}, \hat{B}] \hat{A}^{k} \tag{1}
\end{align*}
$$

Use induction again to prove the intermediate result,

$$
[\hat{A}, \hat{B}] \hat{A}^{n}=\hat{A}^{n}[\hat{A}, \hat{B}] .
$$

Start by checking the base case, $n=1$.

$$
\begin{aligned}
& {[\hat{A}, \hat{B}] \hat{A}^{1} } \stackrel{?}{=} \hat{A}^{1}[\hat{A}, \hat{B}] \\
& {[\hat{A}, \hat{B}] \hat{A} \stackrel{?}{=} \hat{A}[\hat{A}, \hat{B}] } \\
& \hat{C} \hat{A}=\hat{A} \hat{C}
\end{aligned}
$$

Now make the inductive hypothesis,

$$
[\hat{A}, \hat{B}] \hat{A}^{k}=\hat{A}^{k}[\hat{A}, \hat{B}] .
$$

It must be shown that

$$
[\hat{A}, \hat{B}] \hat{A}^{k+1}=\hat{A}^{k+1}[\hat{A}, \hat{B}] .
$$

Work with the left side.

$$
\begin{aligned}
{[\hat{A}, \hat{B}] \hat{A}^{k+1} } & =[\hat{A}, \hat{B}] \hat{A} \hat{A}^{k} \\
& =\hat{C} \hat{A} \hat{A}^{k} \\
& =\hat{A} \hat{C} \hat{A}^{k} \\
& =\hat{A}[\hat{A}, \hat{B}] \hat{A}^{k} \\
& =\hat{A}\left(\hat{A^{k}}[\hat{A}, \hat{B}]\right) \\
& =\hat{A}^{k+1}[\hat{A}, \hat{B}]
\end{aligned}
$$

Therefore, by induction,

$$
[\hat{A}, \hat{B}] \hat{A}^{n}=\hat{A}^{n}[\hat{A}, \hat{B}],
$$

and equation (1) becomes

$$
\begin{aligned}
{\left[\hat{A}^{k+1}, \hat{B}\right] } & =k \hat{A}^{k}[\hat{A}, \hat{B}]+[\hat{A}, \hat{B}] \hat{A}^{k} \\
& =k \hat{A}^{k}[\hat{A}, \hat{B}]+\hat{A}^{k}[\hat{A}, \hat{B}] \\
& =(k+1) \hat{A}^{k}[\hat{A}, \hat{B}] .
\end{aligned}
$$

Therefore, by induction,

$$
\left[\hat{A}^{n}, \hat{B}\right]=n \hat{A}^{n-1}[\hat{A}, \hat{B}] .
$$

Part (b)
The aim here is to prove that

$$
\left[e^{\lambda \hat{A}}, \hat{B}\right]=\lambda e^{\lambda \hat{A}}[\hat{A}, \hat{B}] .
$$

Work with the left side.

$$
\begin{equation*}
\left[e^{\lambda \hat{A}}, \hat{B}\right]=\left[\sum_{i=0}^{\infty} \frac{(\lambda \hat{A})^{i}}{i!}, \hat{B}\right] \tag{2}
\end{equation*}
$$

Use induction to prove the intermediate result,

$$
\left[\sum_{i=0}^{n} \hat{M}_{i}, \hat{N}\right]=\sum_{i=0}^{n}\left[\hat{M}_{i}, \hat{N}\right] .
$$

Start by checking the base case, $n=0$.

$$
\begin{aligned}
{\left[\sum_{i=0}^{0} \hat{M}_{i}, \hat{N}\right] } & \stackrel{?}{=} \sum_{i=0}^{0}\left[\hat{M}_{i}, \hat{N}\right] \\
{\left[\hat{M}_{0}, \hat{N}\right] } & =\left[\hat{M}_{0}, \hat{N}\right]
\end{aligned}
$$

Now make the inductive hypothesis,

$$
\left[\sum_{i=0}^{k} \hat{M}_{i}, \hat{N}\right]=\sum_{i=0}^{k}\left[\hat{M}_{i}, \hat{N}\right] .
$$

It must be shown that

$$
\left[\sum_{i=0}^{k+1} \hat{M}_{i}, \hat{N}\right]=\sum_{i=0}^{k+1}\left[\hat{M}_{i}, \hat{N}\right] .
$$

Work with the left side and use the commutator identity in Equation 3.64, $[\hat{A}+\hat{B}, \hat{C}]=[\hat{A}, \hat{C}]+[\hat{B}, \hat{C}]$.

$$
\begin{aligned}
{\left[\sum_{i=0}^{k+1} \hat{M}_{i}, \hat{N}\right] } & =\left[\sum_{i=0}^{k} \hat{M}_{i}+\hat{M}_{k+1}, \hat{N}\right] \\
& =\left[\sum_{i=0}^{k} \hat{M}_{i}, \hat{N}\right]+\left[\hat{M}_{k+1}, \hat{N}\right] \\
& =\sum_{i=0}^{k}\left[\hat{M}_{i}, \hat{N}\right]+\left[\hat{M}_{k+1}, \hat{N}\right] \\
& =\sum_{i=0}^{k+1}\left[\hat{M}_{i}, \hat{N}\right]
\end{aligned}
$$

By induction, then,

$$
\left[\sum_{i=0}^{n} \hat{M}_{i}, \hat{N}\right]=\sum_{i=0}^{n}\left[\hat{M}_{i}, \hat{N}\right] .
$$

Take the limit of both sides as $n \rightarrow \infty$.

$$
\left[\sum_{i=0}^{\infty} \hat{M}_{i}, \hat{N}\right]=\sum_{i=0}^{\infty}\left[\hat{M}_{i}, \hat{N}\right]
$$

As a result, equation (2) becomes

$$
\begin{aligned}
{\left[e^{\lambda \hat{A}}, \hat{B}\right] } & =\left[\sum_{i=0}^{\infty} \frac{(\lambda \hat{A})^{i}}{i!}, \hat{B}\right] \\
& =\sum_{i=0}^{\infty}\left[\frac{(\lambda \hat{A})^{i}}{i!}, \hat{B}\right] \\
& =\sum_{i=0}^{\infty}\left[\frac{\lambda^{i} \hat{A}^{i}}{i!}, \hat{B}\right] \\
& =\sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!}\left[\hat{A}^{i}, \hat{B}\right] \\
& =\frac{\lambda^{0}}{0!}\left[\hat{A}^{0}, \hat{B}\right]+\sum_{i=1}^{\infty} \frac{\lambda^{i}}{i!}\left[\hat{A}^{i}, \hat{B}\right] \\
& =[\hat{I}, \hat{B}]+\sum_{i=1}^{\infty} \frac{\lambda^{i}}{i!}\left(i \hat{A}^{i-1}[\hat{A}, \hat{B}]\right) \\
& =\hat{I} \hat{B}-\hat{B} \hat{I}+\lambda \sum_{i=1}^{\infty} \frac{\lambda^{i-1}}{(i-1)!} \hat{A}^{i-1}[\hat{A}, \hat{B}] .
\end{aligned}
$$

Continue the simplification by substituting $j=i-1$.

$$
\begin{aligned}
{\left[e^{\lambda \hat{A}}, \hat{B}\right] } & =\lambda \sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!} \hat{A}^{j}[\hat{A}, \hat{B}] \\
& =\lambda \sum_{j=0}^{\infty} \frac{(\lambda \hat{A})^{j}}{j!}[\hat{A}, \hat{B}]
\end{aligned}
$$

Therefore,

$$
\left[e^{\lambda \hat{A}}, \hat{B}\right]=\lambda e^{\lambda \hat{A}}[\hat{A}, \hat{B}] .
$$

Part (c)

Define

$$
\hat{f}(\lambda)=e^{\lambda(\hat{A}+\hat{B})} \quad \text { and } \quad \hat{g}(\lambda)=e^{\lambda \hat{A}} e^{\lambda \hat{B}} e^{-\lambda^{2} \hat{C} / 2}
$$

Differentiate $\hat{f}(\lambda)$ with respect to λ.

$$
\begin{aligned}
\frac{d \hat{f}}{d \lambda} & =\frac{d}{d \lambda} e^{\lambda(\hat{A}+\hat{B})} \\
& =e^{\lambda(\hat{A}+\hat{B})} \cdot \frac{d}{d \lambda}[\lambda(\hat{A}+\hat{B})] \\
& =e^{\lambda(\hat{A}+\hat{B})}(\hat{A}+\hat{B})
\end{aligned}
$$

An operator commutes with an exponential function of itself.

$$
\begin{aligned}
\frac{d \hat{f}}{d \lambda} & =(\hat{A}+\hat{B}) e^{\lambda(\hat{A}+\hat{B})} \\
& =(\hat{A}+\hat{B}) \hat{f}
\end{aligned}
$$

Now differentiate $\hat{g}(\lambda)$ with respect to λ.

$$
\begin{aligned}
\frac{d \hat{g}}{d \lambda} & =\frac{d}{d \lambda}\left(e^{\lambda \hat{A}} e^{\lambda \hat{B}} e^{-\lambda^{2} \hat{C} / 2}\right) \\
& =\left[\frac{d}{d \lambda}\left(e^{\lambda \hat{A}}\right)\right] e^{\lambda \hat{B}} e^{-\lambda^{2} \hat{C} / 2}+e^{\lambda \hat{A}}\left[\frac{d}{d \lambda}\left(e^{\lambda \hat{B}}\right)\right] e^{-\lambda^{2} \hat{C} / 2}+e^{\lambda \hat{A}} e^{\lambda \hat{B}}\left[\frac{d}{d \lambda}\left(e^{-\lambda^{2} \hat{C} / 2}\right)\right] \\
& =\left[e^{\lambda \hat{A}} \cdot \frac{d}{d \lambda}(\lambda \hat{A})\right] e^{\lambda \hat{B}} e^{-\lambda^{2} \hat{C} / 2}+e^{\lambda \hat{A}}\left[e^{\lambda \hat{B}} \cdot \frac{d}{d \lambda}(\lambda \hat{B})\right] e^{-\lambda^{2} \hat{C} / 2}+e^{\lambda \hat{A}} e^{\lambda \hat{B}}\left[e^{-\lambda^{2} \hat{C} / 2} \cdot \frac{d}{d \lambda}\left(-\lambda^{2} \hat{C} / 2\right)\right] \\
& =\left[e^{\lambda \hat{A}} \cdot(\hat{A})\right] e^{\lambda \hat{B}} e^{-\lambda^{2} \hat{C} / 2}+e^{\lambda \hat{A}}\left[e^{\lambda \hat{B}} \cdot(\hat{B})\right] e^{-\lambda^{2} \hat{C} / 2}+e^{\lambda \hat{A}} e^{\lambda \hat{B}}\left[e^{-\lambda^{2} \hat{C} / 2} \cdot(-\lambda \hat{C})\right]
\end{aligned}
$$

An operator commutes with an exponential function of itself.

$$
\begin{aligned}
& =\left[(\hat{A}) \cdot e^{\lambda \hat{A}}\right] e^{\lambda \hat{B}} e^{-\lambda^{2} \hat{C} / 2}+e^{\lambda \hat{A}}\left[(\hat{B}) \cdot e^{\lambda \hat{B}}\right] e^{-\lambda^{2} \hat{C} / 2}-\lambda e^{\lambda \hat{A}} e^{\lambda \hat{B}}\left[(\hat{C}) \cdot e^{-\lambda^{2} \hat{C} / 2}\right] \\
& =\hat{A} e^{\lambda \hat{A}} e^{\lambda \hat{B}} e^{-\lambda^{2} \hat{C} / 2}+\left(e^{\lambda \hat{A}} \hat{B}\right) e^{\lambda \hat{B}} e^{-\lambda^{2} \hat{C} / 2}-\lambda e^{\lambda \hat{A}}\left(e^{\lambda \hat{B}} \hat{C}\right) e^{-\lambda^{2} \hat{C} / 2}
\end{aligned}
$$

Use the result of part (b) in the second term. Since \hat{C} commutes with \hat{B}, \hat{C} commutes with $e^{\lambda \hat{B}}$.

$$
\begin{aligned}
\frac{d \hat{g}}{d \lambda} & =\hat{A} e^{\lambda \hat{A}} e^{\lambda \hat{B}} e^{-\lambda^{2} \hat{C} / 2}+\left(\lambda e^{\lambda \hat{A}} \hat{C}+\hat{B} e^{\lambda \hat{A}}\right) e^{\lambda \hat{B}} e^{-\lambda^{2} \hat{C} / 2}-\lambda e^{\lambda \hat{A}}\left(\hat{C} e^{\lambda \hat{B}}\right) e^{-\lambda^{2} \hat{C} / 2} \\
& =\hat{A} e^{\lambda \hat{A}} e^{\lambda \hat{B}} e^{-\lambda^{2} \hat{C} / 2}+\lambda e^{\lambda \hat{A}} \hat{C} e^{\lambda \hat{B}} e^{-\lambda^{2} C / 2}+\hat{B} e^{\lambda \hat{A}} e^{\lambda \hat{B}} e^{-\lambda^{2} \hat{C} / 2}-\lambda e^{\lambda \hat{A}}\left(\hat{C} e^{\lambda \hat{B}}\right) e^{\lambda^{2} \hat{C} / 2} \\
& =(\hat{A}+\hat{B}) e^{\lambda \hat{A}} e^{\lambda \hat{B}} e^{-\lambda^{2} \hat{C} / 2} \\
& =(\hat{A}+\hat{B}) \hat{g}
\end{aligned}
$$

Both \hat{f} and \hat{g} satisfy the same ODE with the same initial condition at $\lambda=0$, so $\hat{f}(\lambda)=\hat{g}(\lambda)$ for all λ.

$$
e^{\lambda(\hat{A}+\hat{B})}=e^{\lambda \hat{A}} e^{\lambda \hat{B}} e^{-\lambda^{2} \hat{C} / 2}
$$

Therefore, setting $\lambda=1$,

$$
e^{\hat{A}+\hat{B}}=e^{\hat{A}} e^{\hat{B}} e^{-\hat{C} / 2} .
$$

[^0]: ${ }^{37}$ This is a special case of a more general formula that applies when \hat{A} and \hat{B} do not commute with \hat{C}. See, for example, Eugen Merzbacher, Quantum Mechanics, 3rd edn, Wiley, New York (1998), page 40.
 ${ }^{38}$ The product rule holds for differentiating operators as long as you respect their order:

 $$
 \begin{equation*}
 \frac{d}{d \lambda}[\hat{A}(\lambda) \hat{B}(\lambda)]=\hat{A}^{\prime}(\lambda) \hat{B}(\lambda)+\hat{A}(\lambda) \hat{B}^{\prime}(\lambda) \tag{3.105}
 \end{equation*}
 $$

